
APPLICATION OF REAL TIME MODELS FOR REAL TIME CONTROL 

 

Water distribution systems may be controlled to satisfy various objectives, including hydraulic 

performance, water quality performance and economic efficiency. Measures of hydraulic 

performance include pressure levels, fire protection, water quality, and various measures of 

system reliability. Measures of water quality performance include water age and disinfection 

residual levels.  Economic efficiency is influenced by such factors as general operation and 

maintenance and pumping costs. In conventional water supply systems, pumping of treated water 

represents the major fraction of the total energy budget. In ground-water systems, the pumping 

costs normally represent the major fraction of the total operating cost. Therefore, most optimal 

control strategies for water distribution systems have focused on minimizing such operational 

costs. 

 

With respect to the minimization of operational costs, the purpose of an optimal control system is 

to provide the operator with the least-cost operation policy for control units (e.g. pump stations, 

booster chlorinators, etc.) in the water-supply system. The operation policy for a system is 

simply a set of rules or a schedule that indicates when a particular control unit or group of 

control units should be turned on or off over a specified time period. The optimal policy should 

result in the lowest total operating cost for a given set of boundary conditions and system 

constraints. 

 

Any real-time control system will contain three major components in addition to the associated 

SCADA system: a hydraulic network model, a demand forecast model, and an optimal control 

model. Each of these components is discussed in the following sections. 

 

Hydraulic Network Models 

 

In order to evaluate the cost of a particular pump-operating policy or to assess the associated 

operational constraints, some type of mathematical model of the distribution system is required. 

Potential model structures include mass balance, regression, simplified hydraulic, full hydraulic 

simulation, and the use of artificial neural networks. 

 

Mass Balance Models 

 

Mass balance models are normally restricted to systems which contain a single storage tank.  In a 

simple mass-balance model of a single-tank system, the flow into the system equals the demand 

plus the rate of change in storage in the tank. The pressure-head requirements to achieve the flow 

into the tank are neglected, and it is assumed that a pump combination is available that achieves 

the desired change in storage. Nodal pressure requirements are commonly assumed to be 

satisfied if the tank remains within a desired range. When using a mass-balance model, care must 

be taken when determining the cost to pump a given flow because the operating cost is related to 

both the discharge and energy added to the flow. 

 

In addition to use of a mass balance approach for single tank systems, multidimensional mass-

balance models also have been developed. These models consist of weighted functional 

relationships between tank flow and pump-station discharge. The weights associated with the 



functional relationships can be determined using linear regression (Sterling and Coulbeck, 

1975a) or linearization of the nonlinear network (Faliside and Perry, 1975). 

 

The main advantage of mass-balance models is that the system's response can be determined 

much faster than it can from simulation models. Thus, these models are well suited for use with 

optimization strategies that require large numbers of simulation analyses (Joalland and Cohen, 

1985). In general, mass-balance models are more appropriate for regional supply systems in 

which flow is carried primarily by major pipelines rather than by distribution networks in which 

the hydraulics are commonly dominated by looped piping systems. 

 

Regression Models 

 

Instead of using a simple mass-balance model, the nonlinear nature of the system hydraulics can 

be represented more accurately by using a set of nonlinear regression equations. Information 

required to construct such models can be obtained in a variety of ways. Regression curves can be 

generated by repeated execution of a calibrated simulation model for different tank levels and 

loading conditions (Ormsbee et al., 1987) or by the use of information from actual operating 

conditions to form a database relating pump head, pump discharge, tank levels, and system 

demands (Tarquin and Dowdy, 1989). 

 

Regression models have the advantage of being able to incorporate some degree of system 

nonlinearity while providing a time-efficient mechanism for evaluating system response. 

However, regression curves and databases contain information only for a given network over a 

given range of demands. If the network changes appreciably or if forecasted demands are outside 

the range of the database, such an approach provides erroneous results. Moreover, regression 

curves are approximations of the system's response. Unless the curves are close approximations 

of the actual response, errors may accumulate over the course of operation that can adversely 

affect the optimization algorithm and the accuracy and acceptability of its results. 

 

Simplified Network Models 

 

As an intermediate step between a nonlinear regression model and a complete nonlinear network 

model, simplified hydraulic models can be used. In such cases, the network hydraulics can be 

approximated using a macroscopic network model or be analyzed using a system of linearized 

hydraulic equations. Macroscopic models represent the system by using a highly skeletonized 

network model. Typically, only a pump, a lumped resistance term (a pipe), and a lumped demand 

are included. DeMoyer and Horowitz (1973) and Coulbeck (1984) used macroscopic models that 

had multiple terms relating the effect of various system components but in a single equation. 

 

In certain cases (i.e., where the system boundary conditions are essentially independent of pump-

station discharge), it may be possible to represent the system hydraulics using a simple linear 

model. Jowitt and Germanopoulos (1992) appropriately used an approximate linear model for a 

system dominated by large pump heads. In this case, small variations in tank levels did not have 

a significant impact on pump operations. In a similar application, Little and MeCrodden (1989) 

developed a simple linear model for a supply system in which the head in the controlling tank 

was held constant. The coefficients for both model types may be determined after extensive 



system analysis. As a result, such models must be evaluated on a system-dependent basis to 

judge their acceptability. 

 

Full Hydraulic Simulation Models 

 

Network simulation models provide the capability to model the nonlinear dynamics of a water 

distribution system by solving the governing set of quasi-steady-state hydraulic equations. For a 

water distribution system, the governing equations include conservation of mass and 

conservation of energy. These equations can be solved in terms of adjustment factors for junction 

grades (Shamir and Howard, 1968), loop flow rates (Epp and Fowler, 1970), and pipe flow rates 

(Wood and Charles, 1972). 

 

In contrast to both mass-balance and regression models, simulation models are adaptive to both 

system changes and variations in spatial demands. For example, if a tank or large main were 

suddenly taken out of service, a well-calibrated simulation model could still provide the 

hydraulic response of the modified system. A mass- balance or regression model, on the other 

hand, would require modification of the database or regression curves to account for the changes 

in the system's response. Although simulation models are more robust than either mass-balance 

or regression models, they generally require more data to formulate. They also require a 

significant amount of work to calibrate properly. Because such models require a greater 

computational effort than either mass-balance or regression models, they generally are more 

useful with optimal control formulations that require a minimum number of individual system 

evaluations. 

 

Neural Network Models 

 

To reduce the computational requirements of a full hydraulic simulation model, the model can be 

replaced with a neural network representation of the system's response (Ormsbee and Lingireddy, 

1995b). In this case, the neural network can be completely trained off-line, then used instead of 

the network model. The data required to train the neural network can come from multiple 

applications of a previously calibrated hydraulic simulation model. Alternatively, the neural 

network can be trained on-line using real time or archived data obtained from a SCADA system. 

 

Neural networks comprise a set of highly interconnected but simple processing units, each 

responsible for carrying out only a few rudimentary computations. When provided with a 

sequential set of inputs and outputs for a given system, the network can organize itself internally 

in a way that allows it to reproduce an expected output for another given input. The internal 

process of self-organization or developing generalized representation of the system is referred to 

as the training process and is crucial for the efficient reproduction phase of the neural network. A 

neural network is said to be well-trained if the deviation between the output from the neural 

network and the specified output is within a tolerable limit. On the basis of the network topology, 

node characteristics, and learning process, several types of neural networks can be developed. 

 

 

 

 



Demand Forecast Models 

 

To develop an optimal pump-operating policy, network system demands must be known. 

Because the actual daily demand schedule for a municipality is not known in advance, the 

optimal operating policy is estimated using forecasted demands from a demand-forecast model. 

Forecasted demands can be incorporated into the optimal control model using a lumped, 

proportional, or distributed approach. In a lumped approach, system demands typically are 

represented by a single lumped value. Such an approach normally is used in conjunction with 

mass-balance hydraulic models. Proportional demand models are normally used in conjunction 

with regression-based hydraulic models. In such instances, regression relationships are derived 

from a single demand pattern that may vary proportionally to the total system demand. A 

distributed demand approach is applicable when using a full network simulation model. In such 

an approach, the total system demand may be distributed both temporally and spatially among 

the various network demand points. Such an approach enables the development of optimal 

control policies that are adaptable to significant variations in system demand that may occur over 

the course of the designated operating period. 

 

Distributed demand forecast models typically employ three steps: (1) they predict the daily 

demand, (2) they distribute the daily demand spatially among the junction nodes, and (3) they 

distribute the junction demands temporally over a 24-h operating time horizon. Prediction of the 

daily demand can be accomplished by considering such factors as daily weather conditions, 

weather forecasts, seasons of the year, and past trends in water use (Maidment etal., 1985; Moss. 

1979; Ormsbee and Jam, 1994; Sastri and Valdes, 1989; Smith, 1988; Steinen 1989). Distribution 

of the daily system demand among the junction nodes can be accomplished using past meter 

records or real-time database information. Disaggregation of daily junction demands into smaller 

time intervals can be accomplished by considering the day of the week and seasonal patterns of 

diurnal demand (Bree et at. 1976; Chen, ]988a; Coulbeck et at., 1985; Perry, 1981). 

 

Techniques for estimating demand are generally available but the availability of data (both 

spatial and temporal data) has limited the development and application of many available tools. 

As a result, additional work is still needed in this area, including better methods for short-interval 

prediction and spatial desegregation using historical short-term data. With an increase in the 

availability of comprehensive SCADA databases, improved model formulations and performance 

is expected to be attainable. 

 

Control Models 

 

Proper selection of the optimization algorithm for use in solving the associated control model can 

often mean the difference between a sluggish or even nonperforming control model and one that 

functions extremely well. The choice of an appropriate optimization algorithm should be 

governed by the characteristics of the problem to be solved. Several mathematical programming 

techniques, such as linear programming (LP), dynamic programming. (DP), and nonlinear 

programming (NLP), are available to solve the optimal control problem. By far, DP has been the 

optimization algorithm of choice by past researchers. Typically, DP has been used in an implicit 

control formulation with tank water level generally serving as the control variable. When DP is 

used, the control problem is broken down into a series of discrete time steps (stages) that have a 



prescribed set of potential control variable values (states). The optimal solution to the control 

problem is found by evaluating all state transitions between adjacent stages as opposed to 

evaluating all state transitions between all stages (i.e.. total enumeration). By evaluating the state 

transitions between individual stages, a complex problem involving multiple subproblems can be 

reduced to a series of problems involving a single variable. The main problem associated with 

the use of DP is the "curse of dimensionality:' in which the computational efficiency of the 

method significantly decreases as the number of control variables increases. Attempts to 

circumvent this problem have relied on the use of spatial decomposition schemes or the recasting 

of the problem in terms of alternate decision variables and solving using other mathematical 

programming techniques. 

 

LP is the branch of mathematical programming that is used to solve problems where the 

objective function and all constraints are linear functions of nonnegative decision variables. 

Nonlinear problems are frequently solved via LP by assuming that portions of the object function 

and constrained solution space are approximately linear within a prescribed interval. LP 

problems are solved using an approach called the simplex method, which originally was 

developed by Dantzig in the late 1940s. The simplex method offers an efficient means of finding 

the optimum solution of a linear optimization problem by repeatedly selecting the decision 

variable that causes the greatest improvement in the objective function. As a result of the nature 

of the linear solution space, the optimal solution of a LP problem will always lie at the 

intersection of two or more constraints. The simplex method uses this feature of convex 

problems to its advantage by traveling along constraints to the intersection of other constraints. 

Once an initial feasible solution is determined, the algorithm identifies an adjacent point that will 

improve the objective function, then moves along a constraint to the new point. By examining 

the gradients of each constraint passing through the current point, a new point is selected and the 

process is repeated until the optimal solution is found. 

 

The third type of control model uses NLP. As the name implies, NLP is useful for problems 

where the objective function or the constraints of an optimization problem, or both are nonlinear. 

Unlike LP and DP, NLP involves a large number of different techniques that can be used to solve 

an optimization problem. Such techniques range from elaborate gradient-based techniques to 

conceptually simple direct search methods. Recently, several researchers have begun to 

investigate the use of more heuristically based methods, such as simulated annealing and genetic 

algorithms. 

 

The Optimal Control Problem 

 

The optimal control problem for a water distribution system can be expressed in terms of a set of 

decision variables (the things to be varied or controlled), an objective function (an equation 

written in terms of the decision variables that quantifies the objective - e.g. cost), and constraints 

that represent restrictions on the values that the decision variables may assume.  Mathematically 

the problem can be expressed as: 

 

Minimize F(X1, X2, … Xn)    (1) 

 

Subject to:    G(X1, X2, … Xn) =  0     (2) 



 

H(X1, X2, … Xn)  > 0       (3) 

 

XH > X1, X2, … Xn > XL      (4) 

 

Where F(X1, X2, … Xn) is the objective function written in terms of a set of n decision variables, 

G(X1, X2, … Xn) = 0 represent several implicit system constraints, H(X1, X2, … Xn)  > 0 

represents several implicit bound constraints, and XH > X1, X2, … Xn > XL represents several 

explicit bound constraints.  In the following discussion the optimal control problem will be 

illustrated by considering the problem of optimal pump control 

 

Decision variables 

 

The optimal control problem for a water-supply pumping system can be formulated using either 

a direct or an indirect approach, depending on the choice of the decision variable. Direct 

formulation of the optimal control problem divides the operating period into a series of time 

intervals. For each time interval, a decision variable is assigned for each pump, indicating the 

fraction of time the pump is operating during the time interval. The objective function for the 

control algorithm is then composed of the sum of the energy costs associated with the operation 

of each pump for each time interval. The problem can then be solved using either LP or NLP 

(Chase and Ormsbee, 1989; Jowitt et al., 1988; Ormsbee and Lingireddy, 1995a, 1995b).  The 

pump-control policy that results can be classified as explicit (or discrete) because the policy is 

composed of the required pump combinations and their associated operating times. 

Instead of formulating the control problem directly in terms of pump operating times, the 

problem can be expressed indirectly as a surrogate control variable.  Such cost relationships can 

be developed from multiple regression analyses of actual cost data or from the results of multiple 

mathematical simulations of the particular system.  When tank level is used as the surrogate 

control variable, the objective becomes one of determining the least-cost tank-level trajectory 

over the specified operating period.  When pump-station discharge (or pump head) is used as the 

control variable, the objective is to determine the least-cost time distribution of flows (or heads) 

from all the pump stations.  The pump-control policies that result from such formulations can be 

classified as implicit (or continuous) since the individual pump operating times associated with 

the optimal state variables are not determined explicitly (Fallside and Perry, 1975; Sterling and 

Coulbeck, 1975a; Zessler and Shamir, 1989).  However, the set of state variables associated with 

such an implicit solution normally can be converted into an explicit (discrete) policy of pump 

operating times by subsequent application of a secondary optimization program (Coulbeck et al., 

1988b; DeMoyer and Horowitz, 1975; Lansey and Awumah, 1994). 

 

The Objective Function 

 

The operating cost for a pumping system typically is composed of an energy consumption charge 

and a demand charge.  The energy consumption charge is the portion of the electric utility bill 

based on the kilowatt-hours of electric energy consumed during the billing period. The demand 

charge represents the cost of providing surplus energy and usually is based on the peak 

consumption of energy that occurs during a specific time interval. The majority of existing 

control algorithms for water distribution systems only consider energy-consumption charges. 



This is primarily the result of the wide variability of demand-charge-rate schedules and that the 

billing period for such charges can vary between 1 week and 1 year. When such charges are not 

explicitly included in the optimal control objective function, they are either ignored or are 

addressed via the system constraints. 

 

When the demand charges are excluded from the objective function, the objective function can 

be expressed solely in terms of the energy-consumption charge. In general, energy-consumption 

charges can be reduced by decreasing the quantity of water pumped, decreasing the total system 

head, increasing the overall efficiency of the pump station by proper selection of pumps, or using 

tanks to maintain uniform, highly efficient pump operations. In most instances, efficiency can be 

improved by using an optimal control algorithm to select the most efficient combination of 

pumps to meet a given demand. Additional savings can be achieved by shifting pump operations 

to off-peak water-demand periods through proper filling and draining of tanks. Off-peak 

pumping is particularly beneficial for systems operating under a variable electric-rate schedule. 

 

Operational Constraints 

 

Constraints associated with the optimal control problem consist of physical system limitations, 

governing physical laws, and externally defined requirements. Physical system constraints 

include bounds on the volume of water that can be stored in tanks, the amount of water that can 

be supplied from a source, and valve or pump settings. The physical laws related to a supply and 

distribution system are the conservation of flow at nodes (conservation of mass) and 

conservation of energy around a loop or between two points of known total grade. Also included 

in this set are relationships between headloss and discharge through a pipe, pump, or valve. 

Typically, the only external requirements are to meet the defined demands and to maintain 

acceptable system pressure heads. Pressure-head requirements can have both upper and lower 

bounds to avoid leakage and ensure satisfying user requirements. Additional constraints can be 

added to restrict the tank levels to stay within a preset range of values. 

 

When solving the optimization problem, the system's state at the time of analysis is known and 

an assumed final condition is set as a target. The initial state of the system includes the pump 

operations and tank levels, whereas the final state defines the end of cycle tank levels. The period 

of analysis usually is a 1-day cycle, although longer periods can be considered. The cycle for 

most control schemes typically begins with all tanks either completely full or at a preset lower 

level and ends 24 h later with the same condition (Shamir, 1985). 

 

Although not normally considered explicitly in most control algorithms, it should be recognized 

that pump maintenance costs may constitute a significant secondary component of any pump 

operation budget. Pump wear is directly related to the number of times a pump is turned on and 

off over a given life cycle. As a result, operators will attempt to minimize the number of pump 

switches while simultaneously determining least- cost operations. This problem is not as 

significant for newer pumps, which are better designed and made of more durable materials, but 

it is a major concern in many older systems. Unfortunately, sufficient data are not currently 

available to permit the incorporation of such costs directly into the objective function. Instead, 

limits on pump switches normally are set through the use of the system constraints (Lansey and 

Awumah, 1994) or an approximate cost term (Coulbeck and Sterling, 1978). 



Summary 

 

Many researchers have developed optimal control formulations to minimize the operating costs 

associated with water-supply pumping systems.  For a more indepth review the reader is referred 

to Chapter 16 of or an earlier review by Ormsbee and Lansey.  The choice of the appropriate 

algorithm for a particular application will depend largely on the physical characteristics of the 

system.  The most straightforward approach for single-tank systems is a formulation with tank 

level as the state variable in a DP model.  Such an approach is generally efficient when the 

system demands are lumped at a single node or are assumed to vary proportionally.  Attempts to 

incorporate the impact of the spatial variability of demand or changes in the operational status of 

various system components normally requires the use of an alternative formulation.  For systems 

that contain a reasonable number of pumps, it may be plausible to use a pump-run-time model 

(Chase and Ormsbee, 1991;Ormsbee and Lingireddy 1995a, 1995b).  When the total number of 

pumps is large, the use of an implicit pump-station decision variable may be more appropriate 

(Lansey and Zhong, 1990). 

 

For multisource-multitank systems that are highly serial or permit a convenient subdivision into 

distinct hydraulic units, a dynamic programming spatial decomposition approach may be 

feasible.  However, for systems that do not readily permit spatial decomposition, control 

algorithms normally require lumped-pump-station models and the pump-run-time models to 

accommodate directly the nonlinear dynamics of most multisource/multitank systems that makes 

the use of nonlinear optimization an acceptable trade-off.  As more tanks and distributed 

demands are considered, a more detailed simulation model is necessary.  The trade-off is then 

between optimization time requirements, accuracy, and the precision of the associated hydraulic 

model.  Typically, these trade-offs must be evaluated on a network-by-network basis because 

rules of thumb are difficult to derive.  

 

When using pump-station discharge as a surrogate control variable, the selection of a discharge-

cost relationship must be made with extreme care.  In most cases, pump-station discharge will 

vary with both demand and tank level.  As a result, the associated cost and hydraulic 

relationships must have two independent variables (demand and tank level) (Ormsbee et al, 

1989), or they must account for the required pressure head in other approximate ways (Coulbeck, 

1984).  In addition, using pump discharge as the decision variable in a lumped hydraulic model 

implicitly assumes there is a combination of pumps that will supply the optimal flow under the 

correct amount of pressure to cause the desired change in tank level.  This assumption can be 

increasingly difficult to satisfy as the network hydraulics become more complex in multiple-

source and multiple-tank systems. 

 

In general, as the number of pumps or pump combinations increases, so does the computational 

advantage of the lumped-pump-station parameter approach over the pump-run-time approach.  

However, it should be remembered that although the pump run-time approach yields the desired 

pump operational policy directly, the solution obtained using the lumped-pump-station-parameter 

approach subsequently must be translated into an appropriate pump policy. Although the 

computational time associated with this subproblem typically is a small fraction of the time 

required to solve the implicit control problem, it still can be significant. 

 



In general, the majority of optimal control algorithms have been developed for applications with 

fixed-speed pumps. Variable-speed pumps can simplify or exacerbate the difficulty of the 

problem, depending on the decision variable. If pump run time is chosen, each variable speed 

pump can be represented by a series of fixed-speed pumps. However, such a formulation 

increases the total number of decision variables and, hence, computation times. On the other 

hand, the wider continuous-range pump output of variable-speed pumps provides a better 

mechanism for implementing the continuous solutions associated with formulations of lumped-

pump-station parameters. Alternatively, pump speed can be chosen as a continuous decision 

variable in the lumped-system formulation (Lansey and Zhong, 1990). 

 

Despite the multitude of control algorithms that have been developed for optimal control of 

water supply pumping systems, several areas of potential research still remain. For example, few 

researchers have investigated the development of optimal control policies for long-term (weekly) 

planning horizons. Similarly, little research has been conducted on the impact of final pump 

operations on pump maintenance requirements. Robustness of operations also has been a 

neglected area. Finally, the design of water distribution systems is a well-examined area, but 

little emphasis has been placed on the implications of design on operation and vice versa. 

 

Although the use of expert-system technology or neural-network technology in either developing 

or implementing optimal control strategies seemingly has great potential, little work has been 

conducted in this area. Two applications of knowledge-based selection were described by 

Fallside (1988) and Lannuzel and Ortolano (1989). Fallside and Perry (1975) applied a 

decomposition approach to an existing system: however, after gaining experience and 

performing extensive systems analysis, they dropped the scheme in favor of a heuristic described 

as "pump priority logic" (Fallside, 1988). Lannuzel and Ortolano (1989) also examined a water 

supply pumping system and developed an operational heuristic from experience. These rules of 

thumb were then combined with a simulation model in an expert system. Although both studies 

have limited applicability to other systems, they nevertheless provide some insight into the 

usefulness of such an approach. Although several successful applications of optimal pumping 

control exist in Europe and Israel (Alla and Jarrige, 1989; Orr and Coulbeck, 1989; Orr et al., 

1990; Zessler and Shamir, 1989), widespread application of such technology in the United States 

has been severely limited. Future widespread applications of optimal control technology to 

domestic water supply systems are likely to depend on increased use of more sophisticated 

SCADA systems and the availability of more commercially available off-the-shelf control 

software. Additional problems to overcome include the necessity of well-calibrated network 

models and the availability of accurate demand-forecast models. Even when such technical 

problems can be overcome, however, it appears that one great roadblock to the implementation 

of such technology is not the lack of the necessary tools but the unwillingness of utility staff to 

use them. Previous attempts at developing energy cost minimization programs have revealed that 

many pump-station operators have an intrinsic mistrust of computers in general and automated 

operations in particular. In part, the reason may be the conservative nature of most water utilities 

and their justifiable concern for the impact of “optimal policies” on consumers. In other cases, 

system operators may have significant concerns about the impacts of such technology on their 

job security. 

 

 



Such concerns highlight the need for systems analysts to work closely with operations personnel 

to develop and implement a particular control environment. In most cases, experienced operators 

already possess valuable insights into the operation of their system that may prove to be crucial 

to the development of a successful control scheme. Ideally, the system analyst should work in 

concert with the system operator to develop an environment that the operator is not only 

comfortable with but feels some degree of “authorship” as well. In particular, the system should 

reflect the operator's existing wants and needs as much as possible while providing a framework 

for expanded control capabilities. In the final analysis, the real challenge of system analysis may 

not lie in the development of more sophisticated computer algorithms but in the development of 

more efficient strategies and programs for their implementation. 

 

Additional Papers 

 

Additional papers on the topic of optimal control of water distribution systems can be accessed 

here: 

 

Ormsbee, L., and Lansey, K., (1994) "Optimal Control of Water Supply Pumping 

Systems", ASCE Journal of Water Resources Planning and Management, Vol 120 (2). 

 

Ormsbee, L., Reddy, S., (1995), "Nonlinear Heuristic for Pump Operations", ASCE 

Journal of Water Resources Planning and Management, Vol 121 (4), pp. 302-309. 

 

Ormsbee, L., Lingireddy, S., Chase, D., "Optimal Pump Scheduling for Water Distribution 

Systems, MISTA 2009 
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